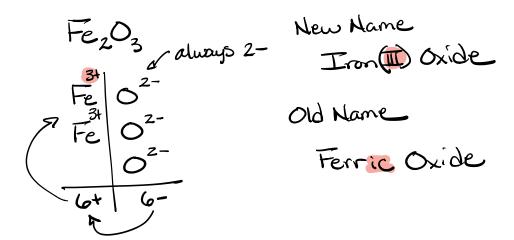
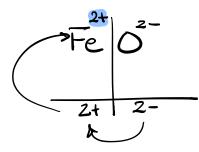
Nomenclature Worksheet


Cut Copper (1) Cut Copper (1) Cut Copper (1) Hg²⁺ Copper (1) Hg²⁺ Hg⁺ Hg²⁺ Co²⁺ Hg²⁺ Co²⁺ Cu²⁺ Co²⁺ Co²⁺ Cu²⁺ Co²⁺ Cu²⁺ Co²⁺ Cu²⁺ Co²⁺ Cu²⁺ +2/+4 Pot Lead (1) Pot Lead (1)

New naming System for transition metal Ions name of metal folled by roman numeral that tells the Charge State Tim (= So


Older Naming System for transition metal Ions uses a root followed by a suffix that indicates high or low Charge State -ic High Charge State -OUS Low Charge State Root - often taken from Latin Fe Ferr Ferric Iron

Fe Ferr Ferrous

Iron (II)

FeO

New Name Iron (Oxide Old Name Ferrous Oxide

Transition Metal Roots for older Naming System +2/+4 +2/+3 Pb Plumbous Pb Plumb Pb Plumb Fe Ferric Cuprous Cupric Co J Cobaltas Co 3+ Cobalt Co Cobalt Co Cobaltic Cr 2+ 7 Chromous Cr 2+ 7 Chromous Cr 2+ 1 Chromic Mn 2+ 7 Chromic Mn 7 Mang Hgz²⁺ Mercurous Mercur Hg²⁺ Mercuric Stannaus Sn²⁺ ? Sn⁴⁺) Stan Stannic Chromic Manganous Monganic Monganic Mnst

nodule 4 => Activity 9

Activity 9 - Nomenclature

Every compound has its own chemical formula and its own name. The nomenclature (naming system) for ionic and molecular compounds is different. Molecular compounds contain only nonmetals and ionic compounds contain **ions** (charged particles) comprised of metals and nonmetals.

Ionic compounds: These consist of any positive ion (**a cation**) except H^+ with any negative ion (**a n anion**). If H^+ is the positive ion, it is an acid.

The **cation** may be a metal ion (e.g., Na^+) or a polyatomic ion (e.g., NH_4^+).

The **anion** may be a nonmetal ion (e.g., Cl^{-}) or a polyatomic ion (e.g., $SO_4^{2^{-}}$).

A. Representative Metal + Nonmetal Compounds

Examples: KBr potassium bromide

AlCl₃ aluminum chloride

- The metal cation is always first (the name of the element is unchanged).
- The nonmetal anion is second (the element name is given an *-ide* ending).
- The compound is electrically neutral without any charges in the formula.

B. Transition Metal + Nonmetal Compounds

In general (but not in every instance), the cations formed by the transition metals can have two different charges. **Memorize** those ions assigned by your instructor (flash cards can help you).

• If the transition metal forms only one ion, name the compound as in Case 1.

Examples:	ZnCl ₂	zinc chloride
	Ag_2S	silver sulfide

• If the metal can form more than one type of ion, name the compounds according to one or both of the possible naming systems (each has two names!).

Examples:	FeO	ferrous oxide (old system) or iron (II) oxide (new system)		
-	formed from	from Fe^{2+} and O^{2-}		
	Fe ₂ O ₃	ferric oxide (old system) or iron (III) oxide (new system)		

formed from Fe³⁺ and O²⁻

Lead and tin form 2+ and 4+ ions. Even though they are **not** transition metals, they are named as such.

Archaic (old) system:

The **-ous** ending refers to the ion with the lower charge state (e.g., Fe^{2+} or Cu^+ , cuprous).

The **-ic** ending refers to the ion with the higher charge state (e.g., Fe^{3+} or Cu^{2+} , cupric).

Modern (new, IUPAC) system:

The modern names for Cu^+ and Cu^{2+} would be copper (I) ion and copper (II) ion.

Cases 1 and 2 involve ionic compounds that consist of only a metal cation and a nonmetal anion – two elements only. They are called **binary compounds** and consist of two monatomic ions. Ionic compounds can also be formed from more complex ions (polyatomic ions).

C. Ionic Compounds with Polyatomic Ions

The list of polyatomic ions (names and formulas) to be memorized is assigned by your instructor (again, index cards can be helpful). Don't worry – you will become more comfortable with these as you gain more experience. For all ionic compounds, the cation is named first, followed by the anion.

Examples:	$(NH_4)_2SO_4$	ammonium sulfate
	K ₃ PO ₄	potassium phosphate
	$Fe_2(SO_4)_3$	iron(III) sulfate or ferric sulfate

Parentheses, (), are used only when **two or more** polyatomic ions comprise the positive portion or the negative portion (or both) of the compound. As examples, in ammonium sulfate two ammonium ions are required to balance the 2- charge on the sulfate ion to form $(NH_4)_2SO_4$, whereas in iron (III) sulfate, three 2-sulfate ions are required to balance the charge of two 3+ iron (III) ions to form $Fe_2(SO_4)_3$. An example of no need for parentheses is potassium phosphate (K₃PO₄).

D. Molecular compounds

These are compounds formed when two nonmetal atoms share electrons with other nonmetal atoms. Binary molecular compounds consist of two different atoms and should be named according to the rules below. Like ionic compounds, the more positive "ion" is first and the more negative "ion" is second, with the negative ion's name including an **-ide** ending. To determine which of the elements is the most positive (or negative), compare their relative electronegativities.

Unlike ionic compounds, the number of each type of atom is specified with a prefix.

1: mono	3: tri	5: penta	7: hepta	9: nona
2: di	4: tetra	6: hexa	8: octa	10: deca

If there is only one atom of the leading element, the mono prefix is not used.

Examples:	NO	nitrogen monoxide	N_2O	dinitrogen monoxide
	NO_2	nitrogen dioxide	IF ₇	iodine heptafluoride
	O_2	oxygen	N_2	nitrogen

E. Acids:

Acids (from the Latin word *acidus*, meaning "sour") are an important class of compounds. One way to define these compounds is as a substance whose molecules each yield one or more hydrogen ions (H^+) when dissolved in water.

The formula for an acid is formed by adding a sufficient number of H to balance the charge on the anion. The name of the acid is related to the name of the anion and includes the label **acid**.

Binary acids are an important class of acids. These follow the general formula HX. The anions whose names end in -ide have associated acids that have the hydro- prefix and an -ic ending (according to the old nomenclature system).

Example: anion = Cl⁻ corresponding acid = HCl (**hydro**chlor**ic acid**, or hydrogen chloride)

• Many of the most important acids are derived from oxyanions (polyatomic ions which contain oxygen). Oxyanions whose names end in **-ite** (sulfite, nitrite, chlorite, etc.) have associated acids whose names end in **-ous**.

Examples: SO_3^{2-} sulfite H_2SO_3 sulfurous acid ClO_2^{-} chlorite $HClO_2$ chlorous acid

• Oxyanions whose names end in **-ate** (sulfate, phosphate, nitrate, chlorate, etc.) have corresponding acids whose names are given an **-ic** ending.

Examples:	SO ₄ ²⁻	sulfate	H_2SO_4	sulfuri c acid
	ClO ₃	chlorate	HClO ₃	chloric acid

• Note that the sulfur containing acids use the root name of "sulfur-" rather than the shorter version "sulf-" used in the anions. This is an exception and must be memorized. Phosphoric acid has three hydrogens attached to a phosphate ion and is like sulfur in that two syllables of the element name are used to name this acid.

• Table 1. Common Ions

Positive Ions (Cations)	Negative Ions (Anions)
+1 Charge	-1 Charge
Group 1A cations	Group 7A anions
Ammonium (NH4 ⁺) Polychowic Cation	Acetate $(C_2H_3O_2)$
Copper (I) or cuprous (Cu ⁺)	Cyanide CN ⁻
Hydrogen (H ⁺) "proton"	Dihydrogen phosphate (H_2PO_4)
Silver (Ag ⁺)	Hydrogen carbonate or bicarbonate (HCO_3)
Hydronium ion (H ₃ O ⁺)	Hydrogen sulfate of bisulfate (HSO_4)
	Hydroxide (OH ⁻)
	Nitrate (NO_3) , nitrite (NO_2)
	Perchlorate (ClO_4) , chlorate (ClO_3) ,
	Chlorite (ClO ₂ ⁻), hypochlorite (ClO ⁻)
	Permanganate (MnO_4)
	Thiocyanate (SCN ⁻)
+2 Charge	-2 Charge
Group 2A cations	Group 6A anions
Cadmium (Cd ²⁺)	Carbonate (CO_3^{2})
Chromium (II) or chromous (Cr ²⁺)	Chromate ($CrO_4^{2^-}$), dichromate($Cr_2O_7^{2^-}$)
Cobalt(II) or cobaltous (Co ²⁺)	Hydrogen phosphate (HPO_4^{2-})
Copper(II) or cupric (Cu ²⁺)	Oxalate $(C_2O_4^{2-})$
Iron(II) or ferrous (Fe ²⁺)	Peroxide (O_2^{2})
Lead(II) or plumbous (Pb ²⁺)	Sulfate $(SO_4^{2^-})$, sulfite $(SO_3^{2^-})$
Manganese(II) or manganous (Mn ²⁺)	
Mercury(I) or mercurous (Hg_2^{2+})	
Mercury(II) or mercuric (Hg ²⁺)	
Nickel (Ni ²⁺)	
Tin(II) or stannous (Sn ²⁺)	
$Zinc (Zn^{2+})$	
+3 Charge	-3 Charge
Aluminum (Al ³⁺)	Group 5A anions
Chromium(III) or chromic (Cr ³⁺)	Phosphate (PO_4^{3-}) , phosphite (PO_3^{3-})
Iron(III) or ferric (Fe ³⁺)	Phosphide (P^{3-})
Titanium (III) (Ti ³⁺)	
]
+4 Charge	4
Lead(IV) or plumbic (Pb ⁴⁺)	4
Tin(IV) or stannic (Sn ⁴⁺)	

Summary of metal cations with more than one possible charge state: $Cu^+, Cu^{2+}; Hg_2^{2+}, Hg^{2+}; Co^{2+}, Co^{3+}; Cr^{2+}, Cr^{3+}; Fe^{2+}, Fe^{3+}; Mn^{2+}, Mn^{3+}; Pb^{2+}, Pb^{4+}; Sn^{2+}, Sn^{4+}$

Activity 9 - Nomenclature

			Name	
			Section	Date
	Exercise A. Representative	Metal + Nonmetal Compounds		
	1. Name the following:			
	NaF Sodium Fluc	cas_		
Sr I	St12 Strontium I	idide_ K20_		
$\frac{\mathbf{I}}{2\mathbf{I}}$	Al ₂ O ₃	AIN		
24 I 2-	2. Give the formulas for the fol	lowing (refer to the periodic table of		
C_{s}^{+} 7^{-}	Cesium phosphide CS 3	P Calciur	n iodide	
Cs ⁺	Barium fluoride		sium nitride	
Cs ⁺	Lithium oxide	Potassi	um sulfide	
3+ 3-	Chloride ion	Alumin	num ion	
	Exercise B. Transition Meta	l + Nonmetal Compounds		
	1. Name the following using be	oth naming systems:		
	Pb^{2+} Lead (I) Sn^{4+}	Fe ²⁺	Cu ²⁺	
	Plumbaus			
Likegrow	2. Name the following:			
the only.	Agel_Silver Chloride	FeBr ₃	Cu ₂ N	
with ever	3. Referring to question 2 abov	e, what is the charge on the Ag?		
state Pe	4. Give formulas for the follow			
	Chromium (III) oxide	Stannous fluoride	Ferrous iodi	de
	Ferric oxide	Cuprous sulfide	Plumbic chlo	oride
	Exercise C. Ionic Compound	ds with Polyatomic Ions		
1.	1. Name the following:			
NH4 0.	(NH4)20 Ammonium O	xide CuC2H3O2	Na ₂ SO ₃	
NH4 0. NH4+	Fe(NO ₃) ₂	LiSCN	NaHCO ₃	
2+ 2-	1. Give the formulas for the fol	lowing:		
	Cupric nitrate	Zinc phosphate	Silver carbo	nate
	Titanium (III) nitride	Mercury (II) cyanide	Lead(IV) acc	etate
	Potassium dichromate	Barium permanganate	Cadmium su	lfate
	Sodium chlorate	Cobalt (II) nitrite	Ammonium	Phosphide

Exercise D. Molecular compounds \checkmark 2. Name the following: SO ₃ Solfer $frioxide$	see page following workshee m notes N205
N ₂ O ₄	СО
CO ₂	Cl ₂ O
P ₂ O ₅	N ₂
3. Give the formulas:	
Bromine trichloride BrClz	Gallium nitride
Oxygen difluoride	Carbon tetrachloride
Sulfur hexafluoride	Silicon dioxide
Iodine pentabromide	Chlorine trifluoride
Hydrogen	Dibromine monoxide

4. Circle any of the common names that require memorization. The compounds marked in bold are those most commonly memorized, ask your instructor to specify the ones you will be tested on.

Methane, CH ₄	Water, H ₂ O	baking soda (Sodium bicarbonate), $NaHCO_3$
Ethane, C_2H_6	Ammonia, NH ₃	lye (Sodium hydroxide), NaOH
Propane, C_3H_8	Acetylene, C_2H_2	table salt (Sodium chloride), NaCl
Butane, C_4H_{10}	Hydrogen peroxide, H ₂ O ₂	Methanol (wood alcohol), CH ₃ OH
Benzene, C ₆ H ₆	Ethanol (grain alcohol), C ₂ H ₅ OH	

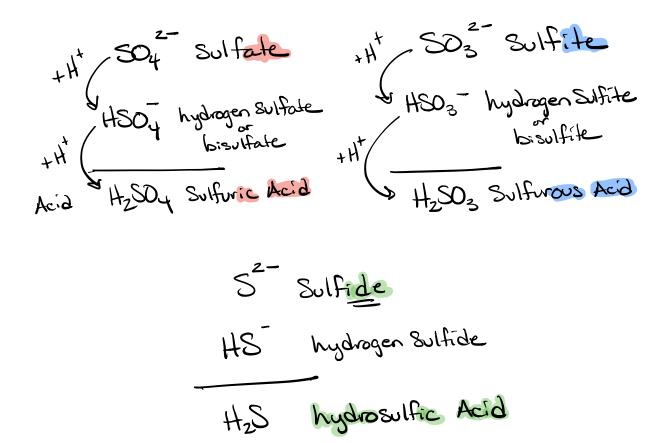
molecular elements: P_4 , S_8 , H_2 , O_2 , F_2 , Br_2 , I_2 , N_2 , Cl_2

Exercise E. Acids

5. Give the formula and name for the corresponding acids of the following anions.

Anion	Formula of anion	# of H ⁺ required to neutralize charge	Formula of Acid	Name of acid
Sulfide				
Carbonate				
Oxalate				
Phosphate				
Acetate				
Nitrite				

6. List of common acids (*ask your instructor to specify the ones you will be tested on*). Acids in boldface are STRONG acids/STRONG electrolytes.


HCl(aq) Hydro	ochloric acid	HF(aq)	Hydrofluoric acid	H ₃ PO ₄	Phosphoric acid
HBr(aq) Hydro	bromic acid	HNO ₃	Nitric acid	H_2SO_3	Sulfurous acid
HI(aq) Hydro	oiodic acid	H ₂ SO ₄	Sulfuric acid	$\mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}$	Acetic acid

Binary Covalent Nomenclature molecular nomenclature Xn Ym where X & Y are both nonmetals * No Charges => no ions * Name must reflect the number of each atom. of both non-metals => mdecular Compound SO3 Rules First element listed by name - if more than 1 a prefix is used to tell how many -mon 1 - hexa 6 -diz -heptaz -triz -octaz -tetrat - nona 9 -penta 5 - decar 10 - Second element always, preceded by prefix followed by name of element with -ide ending

Sufur trioxide

Dichlorine Monoxide C1201

Acid Nomenclature

<u>Careful</u> SO3 VS Binary Covalent Sulfur trioxide

S03 Polyatomic anton Sulfite ion